bootstrap

Bootstrapping—resampling data with replacement and recomputing quantities of interest—lets analysts approximate sampling distributions for complex estimators and frees them of the reliably unmet assumptions of traditional, parametric inferential statistics. It’s an elegant, intuitive approach in which an analyst exploits the (often) parallel resample-to-sample and sample-to-population relationships to understand uncertainty in an estimate.

Bootstrapping is a statistical procedure that utilizes resampling (with replacement) of a sample to infer properties of a wider population.

Let’s say we fit a logistic regression model for the purpose of predicting the probability of low infant birth weight, which is an infant weighing less than 2.5 kg. Below we fit such a model using the birthwt data set that comes with the MASS package in R. (This is an example model and not to be used as medical advice.)

We first subset the data to select four variables:

The Wilcoxon Rank Sum Test is often described as the non-parametric version of the two-sample t-test. You sometimes see it in analysis flowcharts after a question such as "is your data normal?" A "no" branch off this question will recommend a Wilcoxon test if you're comparing two groups of continuous measures.

So what is this Wilcoxon test? What makes it non-parametric? What does that even mean? And how do we implement it and interpret it? Those are some of the questions we aim to address in this post.